
Math 210B Lecture 6 Notes

Daniel Raban

January 18, 2019

1 Transcendental Extensions and Separability

1.1 Transcendental extensions

Definition 1.1. An extension K/F is purely transcendental if every α ∈ K \ F is
transcendental over F .

Proposition 1.1. F ((ti)i∈I), where I is an indexing set, is purely transcendental over F .

Proof. Here is the case of F (t)/F . Let α = f/g ∈ F (t) = F , where f, g ∈ F [t], and g 6= 0.
Then αg(x) /∈ F [x], but αg(x) ∈ F (t)[x]. Then αg(x) 6= f(x) ∈ F [x]. But f(xx) − αg(x)
has a root t, so t is algebraic over F (α). But t is transcendental over F , so α must be
transcendental over F . Thus, F (t)/F is purely transcendental.

For the case of F (t1, . . . , tn)/F , proceed by induction. For the general case, every
element in F ((ti)i∈I) is in F (t1, . . . , tn) for some i1, . . . , in ∈ I. If it is not in F , it is
transcendental by the previous case.

Proposition 1.2. Every field extension is a purely transcendental extension of an algebraic
extension.

Proof. Let K/F , and let E be the maximal algebraic extension of F in K. If α ∈ K is
algebraic over E, it is algebraic over F , so α ∈ E. So K/E is purely transcendental.

Example 1.1. Let F be a field, and let F be an algebraic closure. Then F (t)/F is purely
transcendental. We can do it the other way around, as well. F (t)/F (t) is algebraic, while
F (t)/F is purely transcendental.

Definition 1.2. A subset S ⊆ K for K/F is algebraically independent over F if for
all nonzero f ∈ F [x1, . . . , xn] and distinct s1, . . . , sn ∈ S, f(s1, . . . , sn) 6= 0.

Here are some lemmas about algebraically independent sets. The proofs are the same
as the corresponding properties of linearly independent sets.
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Lemma 1.1. Let S ⊆ K be algebraically independent over F . Then t ∈ K is transcendental
over F (S), where F (S) is the smallest subfield of K generated by S over F , if and only if
S ∪ {t} is algebraically independent over F .

Lemma 1.2. S ⊆ K is algebraically independent over F if and only if every s ∈ S is
transcendental over F (S \ {s}).

Definition 1.3. A subset S of K is a transcendence basis for K/F if it is algebraically
independent over F and if K/F (S) is algebraic.

Example 1.2. Let F (t)/F . {r} is a transcendence basis, and in fact, {t1/n} is a trascen-
dence basis for any n. However {t1/2, t1/3} is not because it is not algebraically independent:
(t1/2)2 = (t1/3)3.

The previous two lemmas imply the following lemma.

Lemma 1.3. Let S ⊆ K. The following are equivalent:

1. S is a trascnece basis for K/F .

2. S is a maximal F -algebraically independent subset of K.

3. S is a minimal subset of K such that K is algebraic over F (S).

Proof. The first two statements are equivalent by the first lemma. The latter two state-
ments are equivalent by the second.

Theorem 1.1. Every F -algebraiclly independent subset of K is contained in a transcen-
dence basis, and every S ⊆ K such that K/F (s) is algebraic contains a trascendence basis.

The proof is the same argument as the corresponding statement in linear algebra.

Corollary 1.1. Every field extension has a transcendence basis. In particular, there exists
an intermediate extension K/E/F such that K/E is algebraic and E/F is purely transen-
cental.

Proof. Take E = F (S), where S is a transcendence basis.

Theorem 1.2. Any two transcendence bases of K/F have the same cardinality.

Again, the proof is the same as the corresponding proof in linear algebra.

Definition 1.4. The transcendence degree of K/F is the number of elements in a
transcendence bases if finite. Otherwise, K/F has infinite transcendence degree.
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1.2 Separability

Definition 1.5. Let f ∈ F [x]. The multiplicity of a root α of F in an algebraic closure
of F is the highest power m such that (x− α)m | f in F [x].

Example 1.3. The polynomial xp− t = (x− t1/p)p in Fp(t
1/p)[x]. The multiplicity of t1/p

is p.

Lemma 1.4. The multiplicity of a root odes not depend on the choice of F and does not
depend on the choice of root if f is irreducible.

Corollary 1.2. The number of distinct roots in F of an irredudcible polynomial f ∈ F [x]
divides deg(f).

Proof. Write f =
∏k

i=1(x− αi)
m. Then km = deg(f).

Definition 1.6. We say that f ∈ F [x] is separable if every root of f has multiplicity 1.
An element α ∈ F is separable if it is algebraic over F and its minimal polynomial over
F is separable. An extension E/F is separable if every α ∈ E is separable over F .

Lemma 1.5. Let E/F be a field extension and α ∈ E be algebraic over F . Then α is
separable over F if and only if F (α)/F .

Proof. If F (α)/F is separable, then α ∈ F (α), so α is separable over F . Conversely,
suppose α is separable over F , and let β ∈ F (α). The number of embeddings of F9β

∫
F

fixing F is ≤ [F (β) : F ]. Equality holds iff β is separable over F .
The number of embeddings F (α)→ F is [F (α) : F ]. On the other hand, α is separable

over F (β), so the number of embeddings F (α) → F extending the embedding F (β) → F
equals [F (α) : F (β)]. So the number of embeddings F (α) → F over F is the product of
the number of embeddings F (β)→ F with the number of extensions of these embeddings
to F (α)→ F . So the number of embeddings F (β)→ F fixing F is

[F (α) : F ]

[F (α) : F (β)]
= [F (β) : F ].
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